AN OVERVIEW STANDALONE SOLAR POWER SYSTEM

KAMANI. SADANANDAM¹, CHINTHALA SRINIVAS²

Mother theressa college of engineering & Technology
Sree chaitanaya institute of Technology & Sciences

Abstract: This paper present basic information about off grid solar power system and major components of off grid solar power system. Operation of solar cell and how solar energy converted into electrical energy. The paper inculdes basic arrangement of off grid solar power system for house holds appliances and fundamental of design considerations of off grid solar power system.

Index terms: Solar panel, Components of solar power system, Arrangement and design consideration of off grid solar power system.

I. INTRODUCTION

Power generated by fossil fuels cause pollution to environment. One day fossil fuel are going disappear completely so in that case we need to depend upon alternating energy source i.e. Renewable energy source . Renewable energy system is used for the future power generation. Among the several renewable energy source solar systems are used in many application like rural electrification, water pumping and remote home etc.

Standalone (off grid) solar power system means producing own power for your requirements. Stand alone system is one that does not have utility connection. Solar power system are used for rural electrification and remote house where access of gird power is not Viable. Power supply to remote house or villages where small amount of power required is more economically from solar standalone system than from main electricity.

II. SOLAR CELL

Solar cells are made up of special materials called semiconductor such as silicon. Solar cell is also called photovoltaic(PV) cell. Which as the name implies photo meaning light and voltaic meaning electricity. A solar cell is a solid state electrical device P-N junction that converts the energy of light directly into electricity (DC) using the photovoltaic effect. The process of conversion first requires a material which absorbs solar energy photon and then raises an electron to higher energy state this high energy electron flows to an external circuit.

These excess charges can flow through an external circuit to produce power.

Figure 1: Basic structure of solar cell

Solar Array

Figure 2: solar cell, solar module and solar array

Solar cell is the basic unit of solar power system. Solar cells are building blocks of solar panels. A multiple solar cells connected in series to produce a higher output is called solar module

Solar module produces a small of amount of energy in order to produce large amount of energy multiple solar panels interconnected together in String. This called PV array or Solar array.

III. MAJOR COMPONENTS OF OFF GRID SOLAR POWER PLANT

Solar power system consists of different components used to generate electricity form sunlight .Selection of solar power system components depends on climate & geographical location, site preparation needs, area available, system type and application. Solar power system components are Solar panels, solar charge controller, Battery bank and inverter.

SOLAR PANEL

Solar panel is the important component of solar power system. Solar panel is also known as solar Module. Solar panel absorb solar energy form the sun and convert it to dc power. Solar module in string can connected in series or parallel. In series connection the voltage will be added up and parallel the voltage will remain same.

SOLAR CHARGE CONTROLLER

The most important component in standalone solar power sytem is solar charge controller. It is the brain of the systme responsible for performance, durability and reliable.

Solar charge controller also known as solar regulator co-ordinate the main component of any standalone system.

Off grid solar power system for household application requires the battery bank when sunlight is not available the energy stored in battery supplies to loads. The battery based system should have a charge controller. The main function of charge controller is to regulate the voltage and current coming from the solar module and going to battery. Solar charge controller selected correctly with specification of battery rating to prevent battery overcharging and thereby battery life improved. The MPPT (maximum power point tracing) solar charge controller are useful for the off grid solar power system. MPPT type charge controller exact the maximum available power form solar module by making them operating at the most efficient voltage.

The MPPT charge controller takes the voltage output of solar panels and compares it to to the battery voltage. IT figure out what is the best voltage to get maximum current into the battery. The MPPT charger controller are most efficient in could weather,

165

low temperature condition PV module works better at cold temperatures and MPPT utilized to exact the maximum power available from the module. When battery deeply charge, MPPT can extract more current and charge the battery if the state of charge in battery is lower.

BATTERY BANK

A Group of batteries wired together is known as a string of batteries. IT is a key component in standalone solar power system. Batteries store energy collect form solar power system and supplies to electric appliances where there is demand and not availability of sun energy. The battery should be large enough to store sufficient energy to operate the appliances at night time, cloudy days and if needed in winter. There are two basic types of batteries that are available for use in a standard solar energy production system. They are sealed batteries and flooded lead acid batteries. The battery suits for standalone solar power system have deep cycle battery.

A cycle in solar battery occur when it is discharged and recharged back to its full level, how much a solar battery is discharged is called depth of discharge.

INVERTER

Inverter converts Dc power from solar panels into Ac power. This power is used for the AC loads. An Inverter used in the system where 230V,AC power output is needed. For standalone systems the inverter must be large enough to handle the total amount of watts that household appliances will using at one time.

IV. BASIC ARRAGEMENT OF OFF GRID SOLAR POWER SYSTEM

The amount of produced will depends on how large the PV system. The greater area of PV panels the more Electricity is generated. The basic arrangement of off Grid solar power system is show in the fig.

Figure 3: Off grid solar power system

Once solar power system is installed and it is operating the power produced is free and there is little maintenance required. Solar energy is a clean source of power. A well designed and installed solar power system will provide electricity for more than 20 years.

Disadvantage: Initials cost is high to install the solar power system. Solar electricity is not available at night and is less available in cloudy weather so storage system battery bank is required.

V. OFF GRID SOLAR POWER SYSTEMDESIGN CONSIDERATIONS

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by solar PV system.

Different size of solar modules will produces different amount of power. To find out the sizing of solar module the total peak watt produced needs. The peak watt produced depends on size of solar module and climate of site location. The selection of inverter should never be lower than the total watt of appliances. The input rating of inverter should be same as solar array rating of inverter should be safe and efficient operation. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. Selection of the solar charge controller to match the voltage of solar array and batteries which solar charge controller has enough capacity to handle the current from solar array.

CONCLUSION

This paper describes importance of off grid solar power. Solar system fast growing energy source because of the increase in energy demand. The major components used in off grid system and energy conversion process in which sunlight energy is converted to electrical energy.

REFERENCES

1. G. M. Masters, Renewable and efficient electric power systems: John Wiley & Sons, 2013.

2. S. I. Sulaiman, T. K. A. Rahman, I. Musirin, S. Shaari, and K. Sopian, An intelligent method for sizing optimization in gridconnected photovoltaic system, Solar energy, Vol. 86, No.7, 2012, pp. 2067-2082. 3. S. Weixiang, Design of standalone photovoltaic system at minimum cost in Malaysia, in Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on, 2008, pp. 702-707.

4. R. Posadillo and R. López Luque, Approaches for developing a sizing method for stand-alone PV systems with variable demand, Renewable Energy, Vol. 33, No.5, 2008, pp. 1037-1048.

